Die Ultraviolettabsorption einiger aromatischer Kohlenwasserstoffe

(3. Mitteilung)

Zur Konstitution des Tetrahydrodiphenvls

Von

MAX PESTEMER und LOTTE WILIGUT

Aus dem Institut für theoretische und physikalische Chemie der Universität in Graz

(Mit 4 Textfiguren)

(Eingegangen am 23. 3. 1935. Vorgelegt in der Sitzung am 9. 5. 1935)

In der vorliegenden Arbeit sollen die Ergebnisse, die durch die Untersuchung und Auswertung der U.V.-Absorption von Benzolderivaten gewonnen wurden, zur Klärung der Konstitution des durch Hydrieren mit naszierendem Wasserstoff aus Diphenyl gewonnenen Tetrahydrodiphenyls herangezogen werden.

Substituiert man im Benzol eine einfache Alkylseitenkette, so ändert sich, wie Pestemer und Gübitz 1 gezeigt haben, wohl die Feinstruktur der Absorptionsbande des Benzols², wie etwa aus dem Vergleich dieser in Fig. 1, Kurve 1, mit der in Fig. 2, 1, wiedergegebenen Bande des n-Propylbenzols ersichtlich ist, nicht jedoch die Höhe der Bande, also die Extinktion der Substanz (Benzol log $\varepsilon_{max} = 2.34$; *n*-Propylbenzol $\log \varepsilon_{max} = 2.39$ ³). Tritt jedoch in der substituierten Alkylkette eine Doppelbindung in konjugierter Stellung zum Benzolkern auf, so zeigt die Absorptionsbande eine außerordentlich starke Erhöhung der Extinktion. Als Beispiele seien die Messungen von Schorning⁴ an

¹ 2. Mitteilung dieser Reihe: M. PESTEMER und O. GÜBITZ, Mh. Chem. 64 (1934) 426, bzw. S.-B. Akad. Wiss. Wien (IIb) 143 (1934) 340.

² Nach K. L. WOLF und W. HEROLD, Z. physik. Chem. (B) 13 (1931) 212.

³ $\varepsilon = \frac{\log \frac{J_0}{J_D}}{c \cdot d}$, J₀ Intensität des eintretenden, J_D des austretenden Lichtes, c Konzentration in Molen je Liter Lösung, d Schichtdicke in Zentimetern, a dekadischer, molarer Extinktionskoeffizient.

⁴ Dissertation Paul Schorning, Berlin 1933; vgl. R. O. HERZOG und A. HILLMERS, Ber. dtsch. chem. Ges. 64 (1931) 1303. Die Daten für die Kurven verdanken wir einer freundlichen Privatmitteilung von Prof. Dr. R. O. HERZOG.

 $-C = C - CH_3$ (Fig. 2, 3) sowie unsere an $-C = CH_2$ (Fig. 1, 2) angeführt, die in Überein-Propenylbenzol < Styrol 🖉 stimmung mit Messungen von RAMART-LUCAS und AMAGAT⁵ an Styrol und Oktylstyrol $\langle -C = C \cdot (CH_2)_7 \cdot CH_3$ zeigen, daß hier Erhöhungen der Extinktion um mindestens 1 im log ɛ, also um mehr als eine Zehnerpotenz gegenüber dem Benzol auftreten. Eine besonders starke Extinktionserhöhung fanden wir beim a-Phenyl-a, $-C = C - C = C - CH_3$ (Fig. 3, 1), das zwei H H H H γ -Pentadien \langle fortlaufend zum Benzolkern konjugierte Doppelbindungen enthält und dessen Extinktion sogar stärker ist als die des Diphenyls (Fig. 3, 2), das zwei miteinander konjugierte Benzolkerne darstellt. RAMART-LUCAS⁵ konnte bei ihren Untersuchungen über die Phenylolefine von der Konstitution $-(CH_2)_n - C = CH_2$ weiters zeigen, daß sich der Benzolkern und die Doppelbindung in der Seitenkette in Bezug auf die Absorptionsbande nicht mehr beeinflussen, sobald die Doppelbindungsgruppe durch kein C-Atom (n = 0) vom Benzolkern getrennt ist. Dies geht auch aus der von $-C-C=CH_2$ H_2 H SCHORNING 4 gemessenen Kurve des Allylbenzols (Fig. 2, 2) hervor (n = 1), die durchaus von der des isomeren Propenylbenzols abweicht und größtenteils mit der des n-Propylbenzols zusammenfällt. Auf Grund dieser Ergebnisse erhält man eine Möglichkeit, die

Auf Grund dieser Ergebnisse erhält man eine Möglichkeit, die Struktur des Tetrahydrodiphenyls zu klären. Die organische Erfahrung lehrt, daß bei Hydrierung aromatischer Kohlenwasserstoffe mit mehreren Benzolringen durch naszierenden Wasserstoff zuerst ein Benzolkern vollkommen hydriert und dann erst ein nächster angegriffen wird. Demnach ist anzunehmen, daß im Tetrahydrodiphenyl ein vierfach hydrierter Benzolkern neben einem intakten vorliegt. Unbekannt war bisher die Lage der einen nicht aufgespaltenen Doppelbindung im hydrierten Benzolkern. Sie kann folgenden drei Strukturformeln

⁵ RAMART-LUCAS und P. AMAGAT, Bull. Soc. chim. France (4) 51 (1932) 965₈

entsprechen. Bei Kenntnis der Absorptionsbande läßt sich nach obigen Überlegungen entscheiden, ob die Doppelbindung konjugiert liegt (Formel I) oder nicht (II und III). Bei der der Formel I entsprechenden Konstitution müßte die Kurve des Tetrahydrodiphenyls durchaus ähnlich der des Styrols oder des Propenylbenzols verlaufen, während sonst Ähnlichkeit mit Allyl- und Propylbenzol zu erwarten wäre. Fig. 4 stellt die Bande des Tetrahydrodiphenyls in Hexan und in Methanol als Lösungsmittel dar, die starke Ähnlichkeit mit denen der erstgenannten Stoffe insbesondere in Bezug auf die Höhe der Extinktion erkennen läßt, wonach dieser Substanz ebenfalls eine konjugierte Doppelbindung zuzuordnen ist. Demnach muß man dem Tetrahydrodiphenyl die Konstitutionsformel I zuweisen. Es ist also identisch mit dem schon bekannten 1-Phenylzyklohexen-(1).

Die durch die Konjugation der Doppelbindung zum Benzolkern bedingten besonderen Verhältnisse bei der Änderung der Übergangswahrscheinlichkeit der Elektronen, die sich durch die oben aufgezeigte Extinktionserhöhung der Absorptionsbande zu erkennen geben, müssen im Sinne der Dispersionskurve auch bei der Molrefraktion aufscheinen. Tatsächlich läßt sich auch hier eine Parallelität zwischen Molrefraktion und U. V.-Absorption aufzeigen, in ähnlicher Weise, wie sie Lederle und Rieche⁶ bei ihren Arbeiten über Peroxyde fanden. Schon auf Grund der Arbeiten von Brühl ließ sich zeigen⁷, daß die Konjugation einer Doppelbindung zum Benzolkern eine Exaltation in der Molrefraktion und -dispersion hervorruft, und KLAGES[§] stellte fest, daß eine Exaltation auch auftritt, wenn eine zyklische Doppelbindung in Konjugation zu einem Benzolkern steht, während Doppelbindungen, die dem Phenylrest nicht benachbart sind, normale Refraktion und Dispersion zeigen.

Es stimmt auch der von Fleischer und Siefert⁹ für Tetrahydrodiphenyl gefundene Wert für die Molrefraktion $M_p = 52 \cdot 12$

⁶ E. LEDERLE und A. RIECHE, Ber. dtsch. chem. Ges. 62 (1929) 2573.

⁷ Siehe: S. SMILES und O. HERZOG, Chem. Konstitution u. physik. Eigenschaften. Th. Steinkopff, Dresden u. Leipzig 1914. S. 315.

⁸ A. KLAGES, Ber. dtsch. chem. Ges. 40 (1907) 2365.

⁹ K. FLEISCHER und F. SIEFERT, Liebigs Ann. Chem. 422 (1921) 310.

gut zu den Werten für das 1-Phenylzyklohexen-(1), für das KLAGES⁸ $M_n = 52.17$, v. Auwers und TREPPMANN¹⁰ 52.49 und 52.37 angeben.

Die Siedepunktsangaben von Kp._{14 mm} = 124 bis 126° von FLEISCHER und SIEFERT⁹ für Tetrahydrodiphenyl und von Kp._{15 mm} = 126 bis 127° für das Phenylzyklohexen nach v. Auwers und TREPPMANN¹⁰ sprechen durch ihre praktische Identität ebenfalls für die Identität des vierfach hydrierten Diphenyls mit dem auf anderem Wege hergestellten 1-Phenylzyklohexen-(1).

Experimentelles.

Die Methodik der Aufnahmen und die Reinigung der Lösungsmittel war dieselbe wie in der 2. Mitteilung dieser Reihe¹.

Styrol: Es wurde das bei Kahlbaum käufliche Präparat verwendet. Da sich beim Stehen immer meta-Styrol bildet, wurde die Substanz am Wasserbad im Vakuum (15 mm Hg) mehrmals destilliert und über geglühtem Natriumsulfat getrocknet, bis der Brechungsindex mit dem in der Literatur¹¹ angegebenen Wert $n_D^{210} = 1.5446$ übereinstimmte. Die gemessenen Werte der Absorptionskurve für die Lösung in Hexan und Methanol sind in Fig. 1, Kurve 2 und in den Tabellen 1 und 2 wiedergegeben. Die Absorptionskurven der beiden Lösungen fallen so nahe zusammen, daß in Fig. 1 nur die der Hexanlösung zur Darstellung gebracht wurde. Die Kurve stimmt mit der von RAMART-LUCAS und P. AMAGAT⁵ gemessenen gut überein, nur daß unsere Messungen die Feinstruktur besser aufzulösen scheinen und an Stelle zweier Teilbanden drei solche dem aufsteigenden Ast überlagert zeigen.

a-Phenyl-a-y-Pentadien wurde nach KLAGES¹² aus Zimtaldehvd und Äthylmagnesiumbromid hergestellt. Das Additionsprodukt wurde nach zwölfstündigem Stehen in eisgekühlte 30% ige Schwefelsäure eingetropft und das Rohprodukt mit Äther ausgezogen, gewaschen und getrocknet. Nach Abdestillieren des Äthers wurde aus dem bereits teilweise polymerisierten Rohprodukt im Vakuum (16 mm Hg) über Siedesteinchen und Silberstaub eine Fraktion zwischen 100 und 150° gewonnen. Da diese bei weiterer Vakuumdestillation wieder zu polymerisieren drohte, wurde sie vom Wasserbad in eine Kältemischung von -25° in evakuierten Zweikugelröhren langsam mehrmals fraktioniert umgedunstet, bis so eine Fraktion bei einer Mikrosiedepunktsbestimmung im Vakuum Übereinstimmung mit dem Wert von KLAGES¹² (Kp.16 $mm = 116^{\circ}$) ergab. Diese Fraktion wurde dreimal weiter umgedunstet und festgestellt, daß jede dieser drei Fraktionen bei charakteristischen Extinktionen in der Nähe des Bandenmaximums die gleiche Wellenzahl in der Absorptionsbande aufwies. Mit der letzten dieser Teilfraktionen, die somit als optisch konstant zu bezeichnen war, wurden die Messungen,

¹⁰ K. v. Auwers und W. TREPPMANN, Ber. dtsch. chem. Ges. 48 (1915) 1217; vgl. Beilsteins Handb. d. org. Chem., 4. Aufl., Bd. V, S. 525; 1. Erg. V. Bd., S. 251.

¹¹ BEILSTEINS Handb. d. org. Chem., 4. Aufl., Bd. V, S. 574.

¹² A. KLAGES, Ber. dtsch. chem. Ges. 40 (1907) 1769.

deren Ergebnisse in Fig. 3 und Tabelle 3 und 4 wiedergegeben sind, durchgeführt.

Diphenyl: Die in der 1. Mitteilung dieser Reihe¹³ nach der WINTHER-Methode gemachte Aufnahme wurde mit der Sektorenmethode wiederholt, um vollkommen vergleichbare Werte zu erhalten. Lage und Verlauf der Kurven sind innerhalb der Fehlergrenze gleich. Die Absorptionskurven der Hexan- und Methanollösung sind in Fig. 3 und in Tabelle 5 und 6 wiedergegeben.

Tetrahydrodiphenyl wurde nach FLEISCHER und SIEFERT⁹ durch Hydrierung von Diphenyl mit Natrium und Amylalkohol dargestellt. Um den Reinheitsgrad zu prüfen, wurden von der ersten Fraktion, die bei 14 mm Hg zwischen 124 und 126^o überging, weitere durch Vakuumdestillation gewonnene Fraktionen im U.-V. untersucht, bis sich keine Veränderung des Spektrums mehr feststellen ließ. Das optisch reine Tetrahydrodiphenyl wurde vor der Messung nochmals im Vakuum destilliert und sofort verwendet. Die Absorptionskurven für die Lösung in Hexan und in Methanol sind in Tabelle 7 und 8 und in Fig. 4 wiedergegeben. Im Gegensatz zu Styrol ist der Einfluß des Lösungsmittels — Erniedrigung und Verbreiterung der Bande in Methanol — deutlich zu erkennen.

log e	v' mm ⁻¹
4.120	(max.==4070)
4.096	3983 4174
$4 \cdot 047$	3964 4204
4.014	3943 4232
$3 \cdot 895$	3875 4313
3.848	3858 4347
3.748	3833 4408
3.649	3807 4424
$3 \cdot 549$	3806
3.468	3801
3.396	3798
$3 \cdot 295$	3778
$3 \cdot 248$	3775
3.206	3770
3.167	3766
3.145	3764
3.114	3760
3.084	3758
3.047	3745
$2 \cdot 994$	3744
+2.957	3739

Tabelle 1.

Styrol in Hexan.

c = 0.0242 Mole i. L.; +c = 0.000188 Mole i. L.

¹³ M. PESTEMER und J. CECELSKY, Mh. Chem. **59** (1932) 113, bzw. S.-B. Akad. Wiss. Wien (IIb) **140** (1931) 541.

log s				v' m	m ⁻¹			
$2 \cdot 947$	/						3731	
2.905							3720	
+2.876							3732	
2.870					(max. =	= 3660)		
2.866					3644	3680	3704	
2.850			(max. =	= 3548)				
$2 \cdot 829$			3532	$3565^{'}$	3643			
2.794			3530	3570	3627			
2.744			3526	3572	3622			
2.715	(max. =	= 3440)						
2.710	3438	3442	3525	3578	3612			
2.682	3437	3442	3523	3583	3612			
2.646	3435	3445	3515	3587	3611			
$2 \cdot 591$	3428	3460	3513					
2.545	3428	3459	3511					
2.503	3427	3458	3507					
$2 \cdot 464$	3422	3455	3503					
$2 \cdot 427$	3416	3459	3502					
$2 \cdot 391$	3412	3472	3500					
$2 \cdot 314$	3412							
2.148	3408							
2.014	3409							
1.848	3403							
1.715	3395							
$1 \cdot 242$	3378							
1.128	3368							

(Fortsetzung der Tabelle 1.)

Tabelle 2.

Styrol in Methanol.

$c=0\,{\cdot}\,00621$ Mole i. L.; $+\,c=0\,{\cdot}\,000454$ Mole i. L.

log €	$\nu' mm^{-1}$	
4.118	$(\max = 40)$	72)
+4.024	3970 40	075
+4.041	3937 - 42	202
+4.013	3925 42	220
+3.975	3916 49	262
3.939	3856 43	336
3.839	3844 45	392
3.758	3819	
3.736	3805	
3.675	3804	
3.585	3798	
$3 \cdot 496$	3793	

(Fortsetzung	der	Tabelle	2.)
--------------	-----	---------	-----

log e	v' mm ⁻¹						
$3 \cdot 420$						3785	_
3.335						3779	
3.273						3773	
3.182						3762	
3.136						3756	
3.055						3756	
$2 \cdot 982$						3738	
2.938						3724	
2.900			(max.≈	=3542)			
2.877			3535	3550		3709	
2.786			3523	3577	3620		
2.735	(max.=	=3442)					
2.697	3430	3455	3512				
2.642	3426	3460	3508				
2.602	3424	3462	3503				
$2 \cdot 539$	3414	3467	3492				
$2 \cdot 439$	3410						
$2 \cdot 358$	3410						
2.306	3408						
2.187	3405						
2.059	3402						
1.987	3397						

Tabelle 3.

lpha - Phenyl = lpha - γ - Pentadien in Hexan. c = 0.01052 Mole i. L.; + c = 0.001052 Mole i. L.

log s	v' m	m ¹	log e	v' mm ⁻¹
+4.400	(max.=	=3515)	2.864	3153
+4.355	3445	3616	2.788	3145
+4.308	3422		$2 \cdot 256$	3002
+4.190	3357	3763	$2 \cdot 167$	2957
+4.076	3330	3841	2.076	2910
+4.043	3327	3848	1.957	2890
+4.006	3315	3862	1.868	2870
+3.952	3303		1.653	2850
+3.804	3280	3954	1.565	2842
+3.788	3265	3988	1.489	2832
3.656	3224		1.374	2812
3.567	3195		1.208	2792
+3.547	3203	4045	1.137	2775
3.355	3180		1.075	2752
$3 \cdot 266$	3180		0.956	2705
3.190	3172		0.868	2662
$2 \cdot 952$	3165		0.756	2620

		T	abelle 4.	
α-ΡΙ	henyl =	α-γ-Ρ	entadien in Me	ethanol.
<i>c</i> =	= 0·00521 (Mole i. L	; $+c = 0.000521$ M	ole i. L.
log s	v' mn	n ⁻¹	log s	v' mm ⁻¹
4.335	(max. =	3550)	2.982	3134
+4.259	3432	3695	2.863	3125
+4.171	3357		2.774	3110
+4.095	3315		2.699	3104
4.082	3307	3838	2.682	3095
+4.016	3281	3878	$2 \cdot 563$	3077
4.016	3283	3882	2.474	3072
$3 \cdot 963$	3257	3901	2+383	3046
+3.954	3260	3896	2.175	2967
3.874	3232	3964	2.080	2923
3.782	3220	4097	1.960	2876
3.662	3205		1.872	2843
$3 \cdot 573$	3202		1.796	2877
$3 \cdot 497$	3195		1.681	2777
3.378	3170		1.561	2744
$3 \cdot 259$	3160		1.472	2728
3.171	3152		1.382	2705
3.092	3150		$1 \cdot 263$	2545

Tabelle 4.

Tabelle 5.

Diphenyl in Hexan.

	c = 0.001	95 Mole i. L	c; + c = 0.01719	Mole i. L.
log ≈	v′ :	mm-1	log s	v' mm1
4.270) (max.	= 4030)	3.521	3660
4.239) 3967	4099	3.161	3584
4.178	3897	4205	+3.012	3563
4.088	3842	4249	+2.694	3530
4.041	3829		+2.652	3530
3.999	3809	4312	+2.297	3 490
3.960	3790	4326	+2.252	3487
$3 \cdot 923$	3781		+1.798	3435
3.888	3766	4359	+1.699	3413
3.804	ł	4388	+1.612	3410
3.597	,	4457	+1.545	3402

Tabelle 6.

Diphenyl in Methanol.

$c=0\,{\cdot}\,001903$ Mole i. L.

log e	v' <i>mm</i> 1	log s	v' m	m^{-1}
				~
4.290	$(\max. = 4030)$	4.235	3930	4160
4.272	3975 4092	4.189	3890	

(Fortsetzung der Tabelle 6.)

log s	$\gamma' m$	<i>m</i> ¹	log =	v' mm ⁻¹
$4 \cdot 099$	3832	4248	2.835	3545
4.010	3793	4306	$2 \cdot 792$	3535
3.899	3758	4368	2.612	3510
3.750	3702		2.537	3500
3.608	3660		1.909	3420
$3 \cdot 495$	3638		1.834	3415
3.391	3614		1.753	3405
3.253	3588		1.645	3390
3.136	3575		1.500	3362
3.000	3560			

Tabelle 7.

Tetrahydrodiphenyl in Hexan.

$c=0\,{\cdot}\,003563$ Mole i. L.

log ε	$\nu' m$	n^{-1}	log ε	v' mm-1
$4 \cdot 020$	(max. ==	=4044)	3.118	3658
3.999	3996	4092	$3 \cdot 027$	3643
3.977	3975	4130	2.638	3565
$3 \cdot 946$	3916	4181	2.382	3500
3.916	3893		$2 \cdot 264$	3482
3.879	3856	4250	2.178	3467
3.779		4323	1.679	3380
3.698	3791	4388	1.598	3345
$3 \cdot 423$	3728		1.546	3245
3.377	3718		1.480	3162
3.332	3707		1.381	3107
$3 \cdot 296$	3700		1.299	3082
$3 \cdot 223$	3674			

Tabelle 8.

Tetrahydrodiphenyl in Methanol.c = 0 002987 Mole i. L.

log ε	v' mm-1	log =	√ <i>mm</i> −1
3.790	$(\max = 4060)$	$2 \cdot 804$	3540
3.775	3991 4120	2.745	3500
3.703	3921 4214	2.639	3465
3.653	3891 4252	2.558	3430
3.619	3862 4272	$2 \cdot 459$	3390
$3 \cdot 591$	3842 4294	$2 \cdot 001$	3240
3.554	3817 4308	1.922	3215
3.500	3794	1.623	3120
$3 \cdot 412$	3764	1.557	3100
3.300	3726	1.458	3060
$3 \cdot 195$	3692	1.376	8 043
$2 \cdot 895$	3566	1.304	3028